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Abstract
We use wavelet-type discrete transforms for signal analysis on strings of finite length.
We apply these transforms for edge and hidden Markov process detection. We also
present new approaches for string matching and for measures of the diversity of
chaotic strings. Copyright  2004 John Wiley & Sons, Ltd.
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Introduction

The immune system is one of the most effective
pattern recognition systems. This system deals
with RNA strings on proteins and viruses and
is involved in several operations and recognition
modes capable of:

• Detecting local particularities.
• Detecting diversity.
• Applying threshold operations.
• Making edge detection.
• Discriminating and taking decisions.

In order to partially model these recognition
capabilities, we introduce new discrete transforms,
providing an effective background for immune-type
computational applications on spaces of strings. All
these transforms exploit local information, as does
the immune system.

In this review, we discuss how the discrete
tree transform (DTT), introduced in the Karanikas
and Proios [10] model of antigen processing, and
then we show (as in Atreas et al. [2]) how DTT
achieves edge detection. We explain how we apply
DTT structures to strings to detect hidden Markov
processes, we introduce a measure for the diversity
of strings based on fractal dimension formulae, as

in Bisbas and Karanikas 1990 [6], and we present
a novel string matching method based on analytic
number theory.

As Felix Browder, the President of the American
Mathematical Society, said in his Retiring Presi-
dential Address [4]:

In molecular biology, mathematics has a much greater role
to play than people realize, even though mathematics has
had, for example, a significant effect on the course of the
genome project. There will be an even larger effect when it
comes to analysing how the genome actually creates living
cells . . . The rituals of classical statistics no longer suffice
to deal with many problems that people face, especially
when they have large masses of data — and large masses
of data are the basic ingredient of the modern world.

In this short review we hope to make clear that
new mathematical methods applied on strings of
biological data could provide a new era for bio-
informatics.

Antigen processing and the discrete tree
transform (DTT)

Antigen processing is an important operation used
by the immune system to provide total success
of recognition and destruction of any non-self
intruder. The operation can be considered as cutting
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the antigen into pieces called antigenic peptides
(a peptide is a small protein). Peptides usually
represent local singularities of the antigen.

In this section we introduce the DTT [10] and
examine its properties.

Definition 1

Let p = 2, 3, . . ., the p-adic approximation of a
non-negative data collection T = {t1, . . . , tpN } is
given by:

Rn,k (T ) =
kpN −n∑

r=(k−1)pN −n +1

tr ,

k = 1, . . . , pn , n = 0, . . . , N


 .

Obviously, the collection:

{Rn,k (T ), k = 1, . . . , pn , n = 0, . . . , N }
has a p-adic tree structure with N + 1 generations,
such that: R0,1(T ) corresponds to the initial node
of the tree; each Rn,k (T ), n = 1, . . . , N − 1 corre-
sponds to the k node of the nth generation and
RN ,k (T ) is the k branch (or leaf) of the last gener-
ation.

Definition 2

The walks an,k (T ) are the following real numbers:

an,k (T ) =




0, R
n−1,

[
k
p

](T ) = 0

Rn,k (T )
R

n−1,

[
k
p

](T )
, R

n−1,

[
k
p

](T ) �= 0

n = 1, . . . , N , k = 1, . . . , pn,

where for any real number x , [x ] is the smallest
integer less than or equal to x .

The DTT of T is the collection of all walks,
an,k (T ) as above.

Obviously, DTT cuts data into successively
smaller and smaller p-adic pieces (peptides), mim-
icking antigen processing. Local singularities are
represented by sets of ratios called walks. Walks, as
do peptides, represent local singularities and allow
the reconstruction of the initial data. Indeed:

Proposition 1

The DTT of T = {t1, . . . , tpN } satisfies the multi-
plication formula:

Rn,k (T )

= an,k (T )an−1,[k/p](T ) . . . a1,[k/pn−1](T )R0,1(T ),

n = 1, . . . , N , k = 1, . . . , pn .

Note that RN ,k (T ) = tk . Thus, for n = N , the
formula reconstructs the initial data set (leaves
of the tree), while for n < N it reconstructs the
branches of the tree. The notion of DTT can be
easily extended on finite strings, as shown in the
following:

Example

The binary walks of the data {c, t, g, c, a, a, a, t}
are the following:
{{

2c + g + t

3a + 2c + g + 2t
,

3a + t

3a + 2c + g + 2t

}
,

{
c + t

2c + g + t
,

c + g

2c + g + t
,

2a

2c + g + t
,

a + t

2c + g + t

}
,

{
c

c + t
,

t

c + t
,

g

c + g
,

c

c + g
,

1

2
,

1

2
,

a

a + t
,

t

a + t

}}
.

As do antigenic peptides, the walks show the
singularities of the processed antigen and can
reconstruct it, e.g. to reconstruct the first element
of {c, t, g, c, a, a, a, t}, multiply the related walks:

(3a + 2c + g + 2t)
2c + g + t

3a + 2c + g + 2t

× c + t

2c + g + t

c

c + t
= c.

DTT has several interesting properties, which we
shall see next.

How DTT achieves edge detection

Edge detection on 2D-plane curves

Edge detection of time series is a computa-
tional process consisting of operations aiming to
detect extreme changes in the shape of a pattern.
Since operations of DTT are capable of erasing
short local variabilities and capturing the relevant
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extreme points, we have presented a method for
edge detection of time series [2]. In this section we
use DTT for detecting the singularities of 2D-plane
curves: T = {(x1, y1), . . . , (xpN, ypN)}, where p is a
prime number and N = 2, 3, . . .

Definition 3

The p-adic approximation of T is given by the
complex numbers:

{
Rn,k (T ) =

kpN −n∑
r=(k−1)pN −n +1

xr + i
kpN −n∑

r=(k−1)pN −n +1

yr ,

k = 1, . . . , pn, n = 0, . . . , N

}
.

For any n = 1, . . . , N − 1, the norm of the
nth p−adic approximation of T is given by
the formula:

||Vn(T )|| = 1

(2N − 1)2N −n

2n−1∑
k=1

||ωn,k (T )||2

where ωn,k (T ) = Rn,k (T ) − Rn,k+1(T )

2N −n and ||.||2 is

the usual Euclidean norm. We shall denote by
||V (T )|| the norm ||VN (T )||.

Proposition 2

(a) There exists a unique index 1 < n0 < N , such
that |||Vn0

(T )|| − ||V (T )||| is minimum.
(b) Let n0 be the index of T as in (a); if Pn0,k are

the points in plane represented by the complex
numbers Rn0,k (T ), then the set:

Jk (T )

=
{

k : sign

( 〈Pn0,k Pn0,k+1, Pn0,k+1Pn0,k+2〉
||Pn0,k Pn0,k+1||2||Pn0,k+1Pn0,k+2||2

)

= −1, k = 1, . . . , 2n0−1 − 2

}

determines the position of the relevant extreme
points of the n0-approximation of T , where 〈,〉
is the usual scalar product.

(c) The set {tα(s) : a(s) = pN −ns, s ∈ Jk (T )} de-
termines the locations of the main edges of the
graph T .

Proof

See [2].

Example

We randomly select a curve of the plane consisting
of 121 points (Figure 1). Applying Proposition 2,
we get the extreme edges of the curve (Figure 2).

Edge detection of 2D-images

The simplest way to model the binding energy
between proteins is in terms of a bilinear form
(mechanical/chemical energy form) (see [12,13]).
The energy bilinear form is determined by a real
rectangular matrix M . Using the SVD analysis of
the matrix M :

M ∼= sLRT , LT L = I , RT R = I

where the singular vectors L, R can be considered
as a mathematical model of ‘antibody probes’,
while the real number (−s) is their binding energy,
two-dimensional images are reduced to two one-
dimensional ‘antigens’. Then we use our DTT
algorithm [2] for edge detection of time series.
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A method to identify hidden Markov
process

A hidden Markov model of a set of data {h(1), . . . ,
h(N )} is a finite set of probabilities, distribution
B = {b1, . . . , bpm+1}, where p is a prime number
and m ≥ 1 is an integer called Markov memory,
such that:

1.
(n+1)p∑

k=np+1
bk = 1, for any n = 0, . . . pm − 1,

2. for M satisfying pM ≥ N > pM −1,

h(j ) =
M∏

n=1

d
(

n,

[
j

pM −n

]
+ 1

)
, j = 1, . . . , pM ,

where

d(n,j) =



1
pn , 1 ≤ n ≤ m

b(Mod(j − 1, pm+1) + 1), m < n ≤ M
j = 1, . . . pn

and Mod(m, n) gives the remainder of the
division of m by n .

It is clear that the collection {d(n, j ), n =
1., M , j = 1, . . . , pn} has a tree structure with M
generations. Obviously, h(j ) represents the overall
probability of being at the j th branch of the M th
generation with respect to a certain concatenation
of the branches of the tree structure.

Now, given a part of a hidden Markov model of
length N :

H = {h(1), . . . , h(N )}
we shall detect p, m and B = {b1, . . . , bpm+1}.

Our algorithm is the following:

(a) Let P be the set of all primes. For each pi ∈ P
we find Mi , such that: pMi < N < pMi+1 .

(b) For any Mi, determine the set:

Spi = {mj : 2p
mj +1
i < pMi

i }
=

{
mj : mj < Mi − 1 − log 2

log pi

}
.

(c) For any triple (pi , mj , Mi ) as above, we define
the walks an,k (H ), where:

n = 1, . . . , Mi and k = 1, . . . , pn
i .
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(d) For any triple (p, m, M ), we compute b(k) =
aM ,k (H ) − am+1

M ,k+p(H ), where k = 1, . . . ,

pM +1. If b(k) = 0 for any k , then select the
particular triple (p, m , M ), else we continue
with the next triple.

Example

Given a part of a Markov data of length 200
(Figure 3), we detect the triple (p, m, M ) = (2, 3,
7) and the set of probabilities B = {αm+1,k (H ), k =
1, . . . , pm+1} = {0 .807104 , 0.192896, 0.581991,
0.207806, 0.792194, 0.634231, 0.365769,
0.698161, 0.698161, 0.301839, 0.155554,
0.844446, 0.288346, 0.711654, 0.341626,
0.658374}.

On measuring the diversity of strings

It is well known that the immune system can
effectively recognize a large variety of peptides
of viruses. In the case of intrusion of unknown
viruses, the immune reaction provides anti-viruses
whose peptides differ significantly from what is
‘stored’ in the ‘memory’ of the immune system
(innate immunity).

In computational analysis a typical measure of
diversity is the entropy formula. The entropy of a
string written in an alphabet of r letters or digits
is given by the formula �i pi log(pi )/ log(r), where
pj is the probability of appearance of the letter or
digit j . This formula is unsatisfactory for measuring
the diversity of strings (or collections of strings),
because when the digits are almost equidistributed,
the entropy is approximately 1. In fact, on a typical
RNA we estimated the probabilities: 0.274, 0.192,
0.20 and 0.33 for A, C, G and T, respectively.
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Using the previous formula we estimate the entropy
as 0.983696.

As a consequence, an entropy formula for the
diversity of strings should measure the local distri-
bution of digits. Since the usual diversity of strings
over an alphabet of p letters depends more on the
local information than on the average distribution
of digits (because they are usually equidistributed),
information or complexity measures based on aver-
aging are not helpful.

In order to estimate the diversity aspects, we
consider the distribution of the peptide location in
a string. As we will see, the locations of peptides
approximately define a fractal-type set. We shall
call this set peptide fractal.

We consider a specific peptide written in an
alphabet of p letters in a string of length pN . Con-
sider the subset J of the set {1, 2, . . . , pN } indicat-
ing the locations of the peptide in a string. We
call peptide fractal the sequence S = {s(n), n =
1, . . . , pN }, such that s(n) = 1 for n ∈ J and
s(n) = 0 otherwise.

Example

Given the peptide aac and the RNA {aacatgaacaact
. . .}, its peptide fractal is {1, 0, 0, 0, 0, 0, 1, 0, 0, 1,
0, . . .}.

Thus, a diversity estimation of strings can be
obtained by an approximate Hausdorff dimension
of the peptide fractal.

The relation between the Hausdorff dimen-
sion (HD) and the Shannon entropy of Markov
symbolic shifts is well defined by the Shan-
non–McMillan–Breiman theorem [3,11]. It iden-
tifies the HD of a fractal supporting a singular
measure, with the Shannon entropy of a symbolic
Markov shift. The Shannon entropy of a symbolic
Markov shift with transition matrix P = {pi ,j } is:
�i ,j pi ,j log(pi ,j ).

Applying Bilingsley’s formula for HD [3] and
using arguments from our previous work [5,6,7,8]
for fractals described by non-homogenous Markov
processes, we now introduce the entropy formula
for peptide fractals S:

Hp(S ) : = 1

N log(pc)

×
pN∑

m=1

N∑
n=1

p∑
j=1

(an,h(m,k)+j log an,h(m,k)+j )

where an,k (n = 1, . . . N , k = 1, . . . , pn ) are the
walks of the p-adic DTT of S , c is the cardinality
of S and h(m, k) := p[m/pN −k+1].

We applied this entropy formula to several well-
known peptide fractals as the Cantor set and we get
the HD with an error less than 3%. On applying
this formula to peptide fractals of RNA, we had
the following observations.

The peptide fractal entropies of RNA are num-
bers distributed between 0 and 1 and in a sense
characterize the peptide fractal. For large RNA
(8000 data), we observed that the entropy on win-
dows (1000 data) is constant with an error less than
3%; in this sense we can say that peptide fractals
have self-similarity.

A new approach for string matching

String matching is a very important subject in the
wider domain of text processing. Although data are
memorized in various ways, text format remains
the main form of information exchange. This is the
case, for example, in molecular biology because
biological molecules can often be approximated as
sequences of nucleotides or amino acids. String
matching consists of finding some or all of the
occurrences of a string in a text (for more details,
see [9]).

In this section we develop a new method for
string matching:

• Consider a string T = {t1, t2, . . . , tN } written
over an alphabet of m letters.

• Associate each different letter of the alphabet to
{p1, p2,...,pm}, where pi is the i th prime number,
thus:

{t1, t2, . . . , tN } −−→ {x1, x2, . . . , xN }
where xi is one of the first m primes.

• Define the set Q = {qi : qi = pi /pi+1, i = 1, 2,
. . . N }.

• Let {ti , ti+1, . . . , ti+j−1} be a substring of T of
length j ; we define the positive real number:

SM (i , j , T )

=
i+j−1∏

k=i

x qk+i−1
k = xq1

i x q2
i+1 . . . xqM

i+j−1,

(i = 1, . . . N − j ).
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Let W = {w1, w2, . . . , wM } and T = {t1, t2, . . . ,
tN } be two strings written in the same alpha-
bet. Then the equality SM (i , j , T ) = SM (k , j , W )

(k = 1, . . . , M − j ), implies matching the sub-
strings {ti , ti+1, . . . , ti+j−1} and {wk , wk+1, . . . ,
wk+j−1}. This is a consequence of a uniqueness
proposition [1].

The algorithm consists of exactly (N − j + 1)
(M − j + 1) calculations and no text comparisons.
It has been effectively applied to DNA strings and
detected precisely the positions of all matching
substrings of the same length.
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